3.1.41 \(\int \csc (a+b x) \csc (2 a+2 b x) \, dx\) [41]

Optimal. Leaf size=28 \[ \frac {\tanh ^{-1}(\sin (a+b x))}{2 b}-\frac {\csc (a+b x)}{2 b} \]

[Out]

1/2*arctanh(sin(b*x+a))/b-1/2*csc(b*x+a)/b

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 28, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {4373, 2701, 327, 213} \begin {gather*} \frac {\tanh ^{-1}(\sin (a+b x))}{2 b}-\frac {\csc (a+b x)}{2 b} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Csc[a + b*x]*Csc[2*a + 2*b*x],x]

[Out]

ArcTanh[Sin[a + b*x]]/(2*b) - Csc[a + b*x]/(2*b)

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 2701

Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*sec[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> Dist[-(f*a^n)^(-1), Subst
[Int[x^(m + n - 1)/(-1 + x^2/a^2)^((n + 1)/2), x], x, a*Csc[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && Integer
Q[(n + 1)/2] &&  !(IntegerQ[(m + 1)/2] && LtQ[0, m, n])

Rule 4373

Int[((f_.)*sin[(a_.) + (b_.)*(x_)])^(n_.)*sin[(c_.) + (d_.)*(x_)]^(p_.), x_Symbol] :> Dist[2^p/f^p, Int[Cos[a
+ b*x]^p*(f*Sin[a + b*x])^(n + p), x], x] /; FreeQ[{a, b, c, d, f, n}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2]
&& IntegerQ[p]

Rubi steps

\begin {align*} \int \csc (a+b x) \csc (2 a+2 b x) \, dx &=\frac {1}{2} \int \csc ^2(a+b x) \sec (a+b x) \, dx\\ &=-\frac {\text {Subst}\left (\int \frac {x^2}{-1+x^2} \, dx,x,\csc (a+b x)\right )}{2 b}\\ &=-\frac {\csc (a+b x)}{2 b}-\frac {\text {Subst}\left (\int \frac {1}{-1+x^2} \, dx,x,\csc (a+b x)\right )}{2 b}\\ &=\frac {\tanh ^{-1}(\sin (a+b x))}{2 b}-\frac {\csc (a+b x)}{2 b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.
time = 0.02, size = 29, normalized size = 1.04 \begin {gather*} -\frac {\csc (a+b x) \, _2F_1\left (-\frac {1}{2},1;\frac {1}{2};\sin ^2(a+b x)\right )}{2 b} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Csc[a + b*x]*Csc[2*a + 2*b*x],x]

[Out]

-1/2*(Csc[a + b*x]*Hypergeometric2F1[-1/2, 1, 1/2, Sin[a + b*x]^2])/b

________________________________________________________________________________________

Maple [A]
time = 0.07, size = 31, normalized size = 1.11

method result size
default \(\frac {-\frac {1}{\sin \left (x b +a \right )}+\ln \left (\sec \left (x b +a \right )+\tan \left (x b +a \right )\right )}{2 b}\) \(31\)
risch \(-\frac {i {\mathrm e}^{i \left (x b +a \right )}}{b \left ({\mathrm e}^{2 i \left (x b +a \right )}-1\right )}+\frac {\ln \left (i+{\mathrm e}^{i \left (x b +a \right )}\right )}{2 b}-\frac {\ln \left ({\mathrm e}^{i \left (x b +a \right )}-i\right )}{2 b}\) \(66\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(b*x+a)*csc(2*b*x+2*a),x,method=_RETURNVERBOSE)

[Out]

1/2/b*(-1/sin(b*x+a)+ln(sec(b*x+a)+tan(b*x+a)))

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 233 vs. \(2 (24) = 48\).
time = 0.51, size = 233, normalized size = 8.32 \begin {gather*} -\frac {{\left (\cos \left (2 \, b x + 2 \, a\right )^{2} + \sin \left (2 \, b x + 2 \, a\right )^{2} - 2 \, \cos \left (2 \, b x + 2 \, a\right ) + 1\right )} \log \left (\frac {\cos \left (b x + 2 \, a\right )^{2} + \cos \left (a\right )^{2} - 2 \, \cos \left (a\right ) \sin \left (b x + 2 \, a\right ) + \sin \left (b x + 2 \, a\right )^{2} + 2 \, \cos \left (b x + 2 \, a\right ) \sin \left (a\right ) + \sin \left (a\right )^{2}}{\cos \left (b x + 2 \, a\right )^{2} + \cos \left (a\right )^{2} + 2 \, \cos \left (a\right ) \sin \left (b x + 2 \, a\right ) + \sin \left (b x + 2 \, a\right )^{2} - 2 \, \cos \left (b x + 2 \, a\right ) \sin \left (a\right ) + \sin \left (a\right )^{2}}\right ) + 4 \, \cos \left (b x + a\right ) \sin \left (2 \, b x + 2 \, a\right ) - 4 \, \cos \left (2 \, b x + 2 \, a\right ) \sin \left (b x + a\right ) + 4 \, \sin \left (b x + a\right )}{4 \, {\left (b \cos \left (2 \, b x + 2 \, a\right )^{2} + b \sin \left (2 \, b x + 2 \, a\right )^{2} - 2 \, b \cos \left (2 \, b x + 2 \, a\right ) + b\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(b*x+a)*csc(2*b*x+2*a),x, algorithm="maxima")

[Out]

-1/4*((cos(2*b*x + 2*a)^2 + sin(2*b*x + 2*a)^2 - 2*cos(2*b*x + 2*a) + 1)*log((cos(b*x + 2*a)^2 + cos(a)^2 - 2*
cos(a)*sin(b*x + 2*a) + sin(b*x + 2*a)^2 + 2*cos(b*x + 2*a)*sin(a) + sin(a)^2)/(cos(b*x + 2*a)^2 + cos(a)^2 +
2*cos(a)*sin(b*x + 2*a) + sin(b*x + 2*a)^2 - 2*cos(b*x + 2*a)*sin(a) + sin(a)^2)) + 4*cos(b*x + a)*sin(2*b*x +
 2*a) - 4*cos(2*b*x + 2*a)*sin(b*x + a) + 4*sin(b*x + a))/(b*cos(2*b*x + 2*a)^2 + b*sin(2*b*x + 2*a)^2 - 2*b*c
os(2*b*x + 2*a) + b)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 50 vs. \(2 (24) = 48\).
time = 2.63, size = 50, normalized size = 1.79 \begin {gather*} \frac {\log \left (\sin \left (b x + a\right ) + 1\right ) \sin \left (b x + a\right ) - \log \left (-\sin \left (b x + a\right ) + 1\right ) \sin \left (b x + a\right ) - 2}{4 \, b \sin \left (b x + a\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(b*x+a)*csc(2*b*x+2*a),x, algorithm="fricas")

[Out]

1/4*(log(sin(b*x + a) + 1)*sin(b*x + a) - log(-sin(b*x + a) + 1)*sin(b*x + a) - 2)/(b*sin(b*x + a))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \csc {\left (a + b x \right )} \csc {\left (2 a + 2 b x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(b*x+a)*csc(2*b*x+2*a),x)

[Out]

Integral(csc(a + b*x)*csc(2*a + 2*b*x), x)

________________________________________________________________________________________

Giac [A]
time = 0.42, size = 38, normalized size = 1.36 \begin {gather*} -\frac {\frac {2}{\sin \left (b x + a\right )} - \log \left (\sin \left (b x + a\right ) + 1\right ) + \log \left (-\sin \left (b x + a\right ) + 1\right )}{4 \, b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(b*x+a)*csc(2*b*x+2*a),x, algorithm="giac")

[Out]

-1/4*(2/sin(b*x + a) - log(sin(b*x + a) + 1) + log(-sin(b*x + a) + 1))/b

________________________________________________________________________________________

Mupad [B]
time = 0.11, size = 26, normalized size = 0.93 \begin {gather*} \frac {\mathrm {atanh}\left (\sin \left (a+b\,x\right )\right )}{2\,b}-\frac {1}{2\,b\,\sin \left (a+b\,x\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(sin(a + b*x)*sin(2*a + 2*b*x)),x)

[Out]

atanh(sin(a + b*x))/(2*b) - 1/(2*b*sin(a + b*x))

________________________________________________________________________________________